Self-healing material a breakthrough for bio-inspired robotics

Digital-Clocks-Self-Healing

Science News and Carnegie Mellon University – Many natural organisms have the ability to repair themselves. Now, manufactured machines will be able to mimic this property. In findings published this week in Nature Materials, researchers at Carnegie Mellon University have created a self-healing material that spontaneously repairs itself under extreme mechanical damage.

This soft-matter composite material is composed of liquid metal droplets suspended in a soft elastomer. When damaged, the droplets rupture to form new connections with neighboring droplets and reroute electrical signals without interruption. Circuits produced with conductive traces of this material remain fully and continuously operational when severed, punctured, or had material removed.

Applications for its use include bio-inspired robotics, human-machine interaction, and wearable computing. Because the material also exhibits high electrical conductivity that does not change when stretched, it is ideal for use in power and data transmission.

READ MORE….

Researchers Create Lab-on-a-Chip for Quick Infection Testing

Infectious-Disease-Testing

All About Circuits – As the pandemic resurges in many parts of the world, researchers have found a way to bring the speed and accuracy of infection testing to mobile devices with a lab-on-a-chip.

A new lab-on-a-chip has been developed by researchers at Imperial College London who hope it can pave the way for low-cost portable diagnostic testing. The lab-on-a-chip (LoC) technology, known as TriSilix, is a “micro laboratory” that can reportedly perform a scaled-down version of the polymerase chain reaction (PCR) test on the spot, presenting its results in just a few minutes. PCR, which detects viruses and bacteria in biological samples, is usually performed in a laboratory, meaning that test results don’t become immediately available. 

Each LoC device contains a DNA sensor, temperature detector, and heater so that the testing process can be automated. According to the researchers’ published findings in Nature Communications, a standard smartphone battery is capable of powering up to 35 tests on a single charge.

READ MORE….

SambaNova Emerges From Stealth With Record-Breaking AI System

SambaNova-DataScale-AI

EE Times – SambaNova, one of the AI chip startup “unicorns,” has emerged from stealth mode after three years to announce its first product, a system-level AI accelerator for hyperscale and enterprise data centers and high performance computing (HPC) applications. SambaNova’s business model includes selling various configurations of the DataScale rack-based system, as well as renting them out for a monthly subscription in an offering the company calls “Dataflow-as-a-service”.

Founded in Palo Alto, California in 2017, SambaNova has been in stealth mode until now, though the company has released some details about its “software defined hardware” chip architecture. The startup has raised $456 million in three rounds of funding to date, and is reportedly valued at more than $2.5 billion.

DataScale is built on SambaNova’s Cardinal SN10 reconfigurable dataflow unit (RDU) chip. SambaNova still hasn’t given away much about this chip, with VP product Marshall Choy telling EE Times only that each chip offers “hundreds of teraflops and hundreds of megabytes of on-chip memory with direct access to terabytes of off-chip memories.” Choy argued that SambaNova’s customers, to an extent, do not care about the details of the chip; they are buying or renting the rack-based system which is SambaNova’s first product.

READ MORE….